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FOREWORD 

T h i s - i s   t h e  second  of three volumes of a f i n a l   r e p o r t   e n t i t l e d  

"Buckling  of  Shells  of  Revolution  with  Various Wall Constructions". The 

three volumes  have the  following t i t l e s :  

Vol. 1 Numerical  Results 

Vol. 2 Basic  Equations  and Method of  Solution 

The  work descr ibed  in   these volumes was carried  out  under  Contract NAS 1-6073 

with the  National  Aeronautics  and  Space  Administration. 
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ABSTRACT 

Volume 1 

Volume 1 presents   the  resul ts   of  a parameter  study  performed  with  the 

computer  program BdSbR (Buckling - of - Shel ls  gf Eevolution) which i s  described 

i n  Volume 3.  The axisymmetric  collapse  and the nonsynnnetric b i fu rca t ion  

buckling  behavior i s  s tudied  for   cyl inders ,   cones,  and spherical  and to ro ida l  

s h e l l  segments  subjected t o   a x i a l  compressive  loads.  Particular  emphasis is 

placed on the e f f e c t s  of eccen t r i c i ty   i n   l oad   app l i ca t ion  and on the 

inf luence   o f   e las t ic  end r ings.  

Volume. 2 

Volume 2 presents  the  equations on which the computer  program BjkjdR i s  

based, as well  as the method  of solution  of the equations. In addition, a 

set  of more general   s tabi l i ty   equat ions i s  given i n  an  appendix. 

Volume 3 
Volume 3 presents  a comprehensive  computer  program (BbSbR) f o r  the 

analysis  of  shells  of  revolution with axisymmetric  loading. The program 

includes  nonlinear  prebuckling  effects and i s  very  general   with  respect  to 

geometry  of  meridian, s h e l l  wall design,  edge  conditions,  and  loading.  Despite 

i t s  general i ty  the program i s  easy  to  use.  Branches are provided  such  that  

f o r  commonly occurring  cases the input data involves  only  basic  informaticin 

such as geometrical  and material propert ies .  The computer  program has 

been  verified  by  comparisons  with  other known solutions.  The cards and a 

computer l i s t i n g   f o r   t h i s  program are available from COSMIC, University of 

Georgia,  Athens,  Georgia, 30601. 
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NOTATION 

Bi 

B33’ B66 

B A L  etc. 

BB11, etc. 

e 

H 

L 

MI fi 

yr 
N 

n 

P 

P 

see Eq. (41) 

6ee E q s .  (52) and (54) 

see Eq. (41) 

boundary condi t ion  coeff ic ients  a t  A, see E q s .  (43) and (74) 

boundary condi t ion  coeff ic ients  at B, see E q s .  (43) and (74) 

coefficients  of  consti tutive  equations,   see Eq. (1) 

see Eq. (42) 

see Eqs .  (60) 

eccent r ic i ty   (d i s tance  from shear center of s h e l l  wall t o   p o i n t  
of load application,  positive  outward) 

horizontal  (radial) force/unit   length  (see  Fig.  5 )  

Gaussian  curvature 

curvature of  deformed s h e l l  

she l l   l ength   (cy l inders  only) 

moment resu l tan t ,   appl ied   ex ternd  moment 

%2 + M21 

stress resu l tan t  

n-er of  circumferential waves in   buckl ing  pat tern 

total sxial load  appl ied  to  shell, positive  compression 

normal pressure,   posl t ive  internal  

v i  i 



Q 
R 

r 

S 

U 

U H 
U 

V 

V 

v 
v - 

E 

H 

shear  load/unit   length (see Fig. 5 )  

radius  of  curvature 

horizontal   radius  from ax i s  of r o t a t i o n   t o  middle  surface 

a rc   l ength  measured  from point A (see  Fig.  5 )  

meridional  displacement 

horizontal   (radial)   displacement 

ver i t ica l   (ax ia l )   d i sp lacement  

circumferential  displacement 

ver t ica l   (ax ia l )   force /uni t   l ength  

appl ied  ver t ic ia l   f 'orce t o  shell,  pos i t ive   for   t ens ion  

normal displacement,  positive  outward 

see E q .  (52) 

meridional   rotat ion  (a lso  winding  angle   for   f iber-reinforced  shel ls)  

middle  surface  strain 

change in   curvature  

s t ress   funct ion  for   prebuckl ing problem $ = rH 

Airy-type  stress  function 

loading  parameter, e .g.  p/pcr 

circumferential  coordinate 

see Eqs .  (50) 

v i i i  



Subscripts and superscr ipts  

d i f fe ren t ia t ion   wi th   respec t  t o  arc   length s 

different ia t ion  with  respect   to   c i rcumferent ia l   coordinate  8 

d i f f e ren t i a t ion   w i th   r e spec t   t o  x 

per ta ins   to   mer id iona l   d i rec t ion  

per ta ins   to   c i rcumferent ia l   d i rec t ion  

shear   resu l tan t ,   twis t ing  moment, twist ing change i n  
curvature 

prebuckling  quantity 

c r i t i c a l   l o a d  

a t  end A of the  meridian (see Fig.  5 )  

a t  end B of the meridian  (see  Fig. 5 )  
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Section 1 

CONSTITUTNE IiELATIONS 

In t h e i r  most general form the   re la t ions  between s t r e s ses  and s t r a i n s  can 

be  writ ten as 

- - 
'11 '12 '13 '14 '15 '16 

'21 '22 '23  '24 '25 '26 

'31 '32 '33 '34 '35 '36 

'41  '42  '43  '44  '45  '46 

'51 '52 '53 '54 '55 '56 

- '61  '62  '63  '64  '65  '66 
i 

1 

The s t i f fness  coeff ic ients ,  C I are  determined  here i n   t e r n  of  the 
Ll 

e l a s t i c  and  geometric  properties of some  common types of s h e l l  wall design. 

In the  following  discussion and in the numerical  analysis  the C a r e  

assumed t o  be independent  of  the  meridional  arc  length.  There are cases  (such 

as meridional ly   s t i f fened  spherical  domes or   she l l s   o f   var iab le   th ickness)   for  

i J  

which the C vary  along a meridian. However, fo r   t he   she l l s   i nves t iga t ed  
i j  

in the  numerical  analysis  presented  here  the C are  almost  constant. 
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As i n  Ref I t he   s t i f fnes s   coe f f i c i en t s  are obtained  by  use of the 

s t ra in   energy  expression  for   the deformed she l l .  The s t r a i n  energy, U i s  

expressed in terms of strains and  changes of CUrV8tUrf3 ,  and the   coef f ic ien ts  

are found as follows: Let a subscr ipt  i following a comma indica te  

d i f f e ren t i a t ion  with respect  to.one of the s t r a i n s   o r  Changes of curvatures 

such that f o r  i e.1, 2, 3, 4, 5 ,  6 derivat ives   are   taken  with  respect   to  el n 

62 ' 612 , K1 , K2 , Kle , respectively.  Then 

The derivation  of  the 

only f o r  one  example, 

consti tutive  equations w i l l  be shown in d e t a i l  here 

the  f iber-reinforced  shel l*  

1.1 Fiber-reinforced Shells 

I n  general   f iber-reinforced shel ls  a r e  composed of several   layers,   with 

the   f ibers   un id i rec t iona l   in   each   layer .  The propert ies  of each  layer  are 

determined  by  use  of  the  equations  given  by Tsai in Ref. 2.'. Current 

fabr ica t ion   techniques   genera l ly   resu l t   in   she l l s  in which the  layers  appear 

pair-wise, one layer  with  the  winding  angle + B and  one with the  angle - 8 with 

respect  to  the  meridian.  Mere the   e lae t ic   p roper t ies   for   each   pa i r  of l ayers  

are first establ ished and f ina l ly   t he   e l a s t i c   cons t an t s  are derived fo r  a 

s h e l l  wall composed of a number of  double  layers. 

For  each  layer  the  following  properties  are  required: 

Ef = modulus of f i b e r s  

2 



I 

uf = Poi s son ' s   r a t io   fo r   f i be r8  

Em = modulus of matrix 

U = poi as on'^ ratio .for matrix 

t = t h i C h e 6 8  of double l aye r  
m 

i j  = angle of wind 

x = matrix  content  (by volume) 

Additional  parameters  are  the two correction  factors  intcoduced  by Tsai: 

the  misalignment f ac to r ,  Y a n d  the  cont igui ty   factor ,  C. For  structure8 that 

are wound wi th   p res t ressed   f ibers  it appears  reasonable t o  assume k = 1.0 

(no mi6alignment). The con t igu i ty   f ac to r  has t o  do with the s t i f fnes s   pe r -  

pend icu la r   t o   t he   f i be r   d i r ec t ion  (C = 0 for   isolated  f i laments   and C = 1 

for  contiguous  f i laments).  The f a c t o r  C is higher, of course, i f  the  matrix 

content i s  low, but  it is gene ra l ly   c lose r   t o  0 than t o  1. Tsai  obtain8 good 

agreement  between  theory  and t e s t   w i th  C = 0.2. 

The moduli Ell and E22 i n   d i r e c t i o n s   p a r a l l e l  and  perpendicular t o   t h e  

f ibers ,   the   shear  modulus C, and  Poisson's  ratio u are   g iven   in  Ref e 2 in 

terns of f i b e r  and matrix proper t ies  (Ef, uf , Em, urn) a It can be 8hoWn 

that 

12 

v21 

3 



and 

E = E' COB p + E' sin P + e' cos p sin P 2 2 
1 X Y XY 

c = E' sin p + E' cos /3 : - ' e  cos p sin /3 2 2 
2 X Y ' XY 

(cos p - sin p )  + 2(r1 - e;) COB /3 sin p 2 2 
"12 = &! Y 

where 4 and represent  the strains in the  meridional sod circumferent ia l  

direct ions,  represents  the  corresponding  shear  strain  and I I 62 I sl2 

a re   s t r a ins   w i th   r e spec t   t o  a coordinate  system  vhich i s  rotated an 

angle B I 

4 
<Y 

The strains at the middle  surface of the  double  layer are % 4 + 

and the  changes of c u r v a t m s   a r e  I a K Hence 
Y XY 

Layer 1 Layer 2 

t 
E'  6 + " K  t 
x x 4 x  X x 4 x  

€ 1  = 4 " K  

t E' = E  " K  E' = E + " K  t 
Y Y 4 Y  y y 4 Y  

t 

4 



In Layer 1 

The following  expressions  for  the changes of  curvature  apply i n  the 

reference  systems  with  coordinates  parallel or perpendicular t o  the f iber  direct ions 

where, when there are double eigne, the upper appiiee to Layer 1 and the lower 

t o  Layer 2. 

5 



The strain energy density in the double layer i e  

e 1 - v  v 12 21 12 

Substitution of Eqs . (6), (7) I and(8) into Eq. ( 9 )  and  subsequent  appli- 

cations  of Eq.(2) gives  the  stiffness  coefficients  for  one  (double)  layer. 

The  matrix [C 3 is diagonally  symmetrical. Thus there  are 21 Independent 

constants.  The  non-zero C ' 8  are 
iJ 

ij 

I [ E l l  cos 4 P + E22 ein 4 P + - V ~ ~ V ~ ~ ) ) C O S  2 / 3 s i n 2 p ]  
cll 1 - v  v 12 21 

- 2 G ( 1  - V ~ ~ V ~ ~ ) ( C O B  2 P - sin 2 p ) ]  

6 



I 

4 2 
c22 - -1 - v12v21 [ E l l  sin p 4 E22 cos4 P + (2v12E22 + 4G(1 - V12V21)}8~2PCOS P] 

D t2 Bin /3 COB p [El1 sin 2 p 7 EZ2 COB 2 p + v12E22 ( cos2f3 - sin2B) 
'26 4(1 - ~ ~ ~ v ~ ~ )  

+2G(  1 - v12~21j (COS P - sin p ) ]  2 2 

I t2 cos p sin p cos 2 p sin 2 p + v E (isin 2 B cos 2 a )  
'34 4(1 - v12v21) 12 22 

- 2G(l  - v12~21) (COS 2 P -. sin2@) ] 

t2 
cos P sin p sin 2 p - E  cos2 p v E (cos 2 p sin 2 B )  '36 4(1 - V ~ ~ V ~ ~ )  22 12 22 

+ 2G(1 - V12v21) (COB 2 P - sin 2 P ) ]  

I t3 ( E l l  cos 4 p + E22 sin 4 P + (2vl2EZ2 + 4G ) Bin2 p 2 /3] 
'44 12( 1 - v12v21) 

I t3 (sin 2 p cos 2 /3 ( E l l  + E22 - 4G ) + v12E22 (Cos4p + sin' p) }  
'46 12(1 - ~ ~ ~ v ~ ~ )  

I t3 [ E l l  sin 4 B + E22 cos 4 P + (v12E22 + 4G.) sin 2 p cos 2 p ]  
%5 12(1 - v12v21) 

7 



In   general  a f iber - re inforced   she l l  i s  composed of a number of double 

l aye r s .  The e l a s t i c   p rope r t i e s   fo r   each  of these  areobtained from E q s .  ( 10). 

Hence f o r   t h e  ith l a y e r  

Here cl c2 and 
i i  

i i  
5 1  €1 + c;2 s2 

5 2  €1 + c;2 4 
c33 €12 + Ci4 K1 

ci4 €112 + Ct4 K1 

c35 €12 + Cis K1 

i 

i i  

i i  

i 

i i  

K 2  

+ ‘16 K12 
i 

+ ‘:6 

+ cis K 2  

+ c;5 K 2  

+ Cis K2 

+ ‘12 

i 
€12 are s t r a i n s  a t  the  midplane of the ith laye r .  The 

s t r a i n   d e n s i t y   i n  one l aye r  can  be  written i n   t h e  form 

If 6 1  8 9 J €12 a r e   s t r a i n s  a t  any  given  reference  surface  the  strains 

in   the   ind iv idua l   l ayers  are given  by 

8 



where hi is defined i n   F i g .  1 

R 

Fig. 1 Layered Shell 

If the  total  number of layers is I substitution of Eqs. ( 12) in to  

Eqs. ( 11) and subsequent application of Eqe. ( 2) yields 

i 
c15 = c - hi 5 2  

= c c22 c22 
i 

'23 = o  

9 



c 34 = c Ci4 c35 = c cS5 

where 

i=1 

For this example as well  as f o r   a l l   o t h e r   t y p e s  of s h e l l  walh oonsidered  here 

the  reference  surface is chosen  such that 

T h a t  is I 

= =(sbi 
The p resen t   s t ab i l i t y   ana lys i s  is 

C36 = 0 

-r 

r e s t r i c t ed   t o   t he   ca se  i n  which a x i a l l y  

symmetrical  loads on the   shel l   lead  to   axial ly   symmetr ical   prebuckl ing 

deformations.  Consequently  the analysis is applicable  only if 

10 



According t o  Eqs. ( 13) only C and C a re   zero t   bu t  it appears   that  i n  
13 23 

most cases  the  remaining  constants  in Eqs . (  14)are negl igible .  

For the   present   analysis  it w i l l  thus  be assumed that 

N1 - '11 €1 '12 9 + '14 K1 + '15 K2 

N2 - '12 €1 + '22 9 + '24 K1 + '25 K2  
- 

N12 - '33 "12 
- 

M1 - '14 €1 + '24 9 + '44 '1 + '45 K2 
- 

M2 - '15 €1 + '25 %? -k '45 K1 + '55 K 2  
- 

% = '66 K12 

where the  constants are given  by Eqs.  ( 13) 

St i f fnes s   coe f f i c i en t s  f o r  a number of s h e l l s  of d i f f e r e n t  wall constructions 

have been  derived i n  a similar way and  the r e s l l t s   a r e   p re sen ted  below. 

1 .2   She l l s   S t i f fened  by Rings and S t r ingers   ( i so t ropic   sk in)  

For the  determination  of  the  coefficients  of  Eqs.(15),   the  following 

proper t ies   a re   requi red  : 

For skin E Young ' s modulus 

I) Poisson's r a t i o  

t thickness 



For s t i f f e n e r s  d Spacing 

A Cross-sectional  area 
P 

P 
I Moment of i n e r t i a  of  cross-section  around i ts  
P n e u t r a l   a x i s   p a r a l l e l   t o  skin 

J Torsional  constant 
P 

X Distance from neutral   surface t o  skin midplane 

E Young ' 8 modulus 

G Shear modulus 

CL 

CL 

CL 
Posi t ion   (ou ts ide   o r   ins ide)  

These data are f o r   s t r i n g e r s  i f  the subscr ipt  p equals one and f b r  r ings if it 

equals two.  For the  special   case of in tegra l   rec tangular   s t i f feners  it is 

suff ic ient   to   def ine  the  spacing and 

b S t i f f ene r  width 

h St i f fener   height  
CL 

cc 

For this case 

J = $ Win (b h3 , b3 h ) 
CL P P  P C L  

12 



For brevity the  following parameters are introduced 

cr, = (1 - u2) Al / ( t  dl) 

= (1 - u 2 )  A2/(t d2) 

q1 - (Il + % x;) (1 - U2)/(dl t) 

82 = (I2 + A2 X:) (1 - u2)/(d2 

Vtl 

Qt2 

= (1 - u2)  G1 Jl/(%tE) 

= (1 - u 2 )  G2 J2/(d2 t E )  

2 C = E t/(l - U ) 

With the skin middle surface as reference surface the stiffness  coefficients are 

Cll = c (1 + 'pJ 

5 2  = CL c 

'14 = % h 
C15 = 0 

Ca = c (1 + p2) 

c24 = 0 

C25 = X2 12 C 

c33 = 0.5 (1 - U )  C 

c44 = c C(1 4. TIl) 4- t2/12] 

Ck5 = u c t2/12 

= c [(l + TQ + t2/12] 

These constants are identical  to those i n  Ref. 3. 

13 



1.3 Shells  with Skew S t i f f ene r s  

The following  information i s  required 

For  skin E Young ' s modulus 

P Poi s son ' s   r a t io  

t thickness 

For s t i f f e n e r  8 angle  between  stiffener  and  generator 

d spacing  (see  Fig. 2 ) 

b width 

h height 

Posi t ion  (outs ide o r  in s ide )  

'A 
Fig. 2 Skew S t i f f e n e r s  

14 



The following  notations are introduced: 

c =  

P =  
- 

4 - 

E t/(l - .v2) 

t2/12 

2 b h (1 - u2)/(d t )  

b h3 (1 - u2)/(6 d t )  

2  h b3 (1 - u ) / ( 3  d t) 

where p2 i s  the  dis tance from the  skin's   midsurface  to  the  regerence  surface.  

For the caee of i n t e r n a l   s t i f f e n e r s  p i s  negative. 

The s t i f fnes s   coe f f i c i en t s   a r e  

15 



1 . 4  Orthotropic  Skin with St i f f ene r s  

For the  shel l   wi thout   s t i f feners   the  fol lowing  re la t ions  apply:  

The most general  case  allowed  then i s  a ''skin" which i s  composed of a 

number of or thotropic   layers .  The cij 's could  for  instance  be  obtained  through 

application  of  the E q s .  ( l 3 ) t o  a f iberg lass   re inforced   she l l  

In  addition  the  following  information i s  required: 

For skin t = to ta l   th ickness  

z = distance from inner   sur face   to   shear   cen ter  

16 



For s t i f f e n e r s  

defined  under  "Shells  Stiffened 

by Rings  and  Stringers" 

- 
X 

P 
distance from the  neutral   axis  
of  s t i f fer ; ler   to   the  c losest  
skin  surface.  

The subscr ipt  p again i s  one for   s t r ingers   (meridional   s t i f feners)   and two 

f o r   r i n g s  

Se t  

fo r   i n s ide   s t i f f ene r s  

X 
k 

fo r   ou t s ide   s t i f f ene r s  

2 2 )  

The following  st iffness  constants  are  obtained for the   skin  and  s t i f fener  

combination 

Cl4 - - El4 -t X E A /d 1 1 1 1  

17 



C = c25 + X2 E2 A2/d2 25 
- c = c  33 33 

These  equations may be  used  also  if  stringers  and  rings  are  added  to  the 

configurations  discussed in the  sequel. 

1.5 Layered  Shells 

For layered  shells  the  stiffness  coefficients  can  be  established on 

basis of  the  following  information: 

For each  layer 

Number  of  layers 

Young's  Modulus in axial  direction 

Young's  Modulus in circumferential  direction 

Poisson's Ratio 

Shear  Modulus 

thickness 

The distance from the  inner  surface of the  shell to the  middle surface of 

18 



the ith layer is 

The shear center is located at a  distance z outside of the inner surface 

where 
I 

With 

hi = z - b i  

the  stiffness  coefficients f o r  layered  shells are 

and 

I 

I 

19 



I 

- 
c33 = 5 Gi ti 

i =1 

I 

I - s 2 (t;/12 -t h:) (Ey)i ti/(l - vi 2 ) 
c55 i=l 

- 
'66 - - i =1 4 (t:/12 + h:) Gi ti 

1.6 Corrugated Skin  with Rihg-Stiffeners 

The present   analysis  is appl icable   on ly   for   . she l l s  of revolution.  Consequently 

it does  not   a2ply  to   shel ls  w i t h  s t i f f ene r s   i n   t he   mer id iona l   d i r ec t ion  u n l e s s  

t h e   s t i f f e n e r s  are suf f ic ien t ly   c lose ly   spaced .  If the   s t r inger   spac ing  i s  

szyall i n  comparison to   the  c i rcumferent ia l  wave length of the   buckl ing  pat tern  the 

propert ies  of t h e   s t i f f e n e r  can  be  "smeared  out" i n  an obvious way. For t h e  

corrugated sk in a similar   s imj?l i f icat ion is readily avai lable  for  determination 
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of some of t h e   s t i f f n e s s   c o e f f i c i e n t s .  However, for  other  parameters  such as the  

t o r s i o n a l   s t i f f n e s s  t h i s  i s  not  the  case  and  certain  loosely-founded  assumptions 

a r e  made i n  the development. By var ia t ion of the questionable 

parameters in   the  numerical   analysis  C t  i s  r evea led   t ha t   t he   c r i t i ca l   ax i a l  

load i s  only  moderately  effected. 

Fig.  3 Corrugated  Skin 

The fol lowing  data   are   required  for   the  analysis  

E Young ‘ s modulus 

V Poisson’s r a t i o  

ht t t  bt ct d dimensions in   F ig .  3 

The following  notations  are a l so  used: 

2 1  



8 = (b  - c - d)/[2(h - t) J 

Iy = ( 1 + p )  2 1/2 

f = c - t(cr + e) 

The area  per   uni t   width 

Distance from inner  surface t o  neutral   surface 

z = t [ 2 ( g  - f )  + h ( f  + fit + &)7/ (b tx )  t 

Moment of iner t ia   per   un i t   wid th  

+ f ( h  - z - t)2 -I- B t  ((2 
2 2  
3 2 - -  t )  + ( h  - 

The bending  s t i f fness   in   the  c i rcumferent ia l   d i rect ion i s  E I Y 
where 

2 - t” 7: I =  - 
2 L  Y 1 2 ( 1  - u ) 

and L i s  the  developed  width  of  the  corrugatior. 

L = 2 a ( h - t ) + c + d  

Under the  assumption that the  shear  force i n  the  plane of the  sheet i s  constant 

the   shear   s t i f fness  i s  G t where 
b 
L 

t = -  ( 34) 
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It i s  assumed tha t   t he   t o r s iona l   s t i f fnes s  can be  represented by t h a t  

of a narrow c i rcumferent ia l   s t r ip .  The t o r s i o n a l   s t i f f n e s s  i s  G 7 where 

The coe f f i c i en t s   i n   t he   cons t i t u t ive   r e l a t ions   fo r   t he  skin are 

- 
cll = E tx 

5 2  
- - C l 4 = c  = o  

c22 - c24 = c = 0 

c33 

- - - 
15 

25 
- - - 

- 
= G Z  

- 
C44 = E Ix 

c = o  - 
45 

- 
c55 Y ( 36) = E ?  

CG6 = G 

I II. 

The coe f f i c i en t s   fo r   t he   r i ng   s t i f f ened   she l l s   a r e  found by use of equations 

given above (orthotropic  skin with s t i f f e n e r s ) .  
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1.7 Semi-sandwich 

A s h e l l  wall composed of a corrugated  sheet  attached to a smooth skin 

as shown i n   F i g .  4 i s  here   re fe r red   to  as a semi-sandwich. The s h e l l  may or 

may not  be  reinforced  by  r ings.  

Fig.  4 Semi-sandwich 

In   addi t ion   to   the  problems  discussed above for  the  corrugated  skin,   the 

determination of t he   t o r s iona l   s t i f fnes s  of t h e   s h e l l  wall i s  questionable. 

The combination  of  corrugation and skin  provides a closed  section that 

can   ca r ry   e f f i c i en t ly  a twist ing moment 3 . However, this i s  t rue 

only i f  the moment i s  independent  of  the  axial  coordinate. If the moment 

var ies ,   local   bending i s  introduced and t h e   s t i f f n e s s  i s  greatly  reduced. 

Obviously  the  tors ional   s t i f fness  of the  closed  section depends on the   pa t te rn  

of  deformation of t he   she l l  and a rigorous  solution  cannot  be  obtained by 
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use of an  equivalent  orthotropic  shell .   In  the computer  program  based on 

the  present   analysis  a reduct ion  factor  'p t o   t h e   t o r s i o n a l   s t i f f n e s s  i s  an 

input  parameter. The data required f o r  the  determination of t h e   s t i f f n e s s  

coe f f i c i en t s  are 

E,  V, h, t, bs C ,  d Properties of corrugated  skin as defined 
above (Corrugated  Skin  with  Ring  Stiffeners). 

Young's modulus of plane  skin 
ES 

Poisson ' s   ra t io  of plane  skin 

S thickness of plane  skin 

Posi t ion of corrugation  (outside or i n s ide )  

CP correc t ion   fac tor  

The following  notations  are  also  used 

txl z s  Ix, I J as defined above (Corrugated  Skin with Ring S t i f f ene r s )  
" 

YI 

t* = Gt(n + s ) / [ 2  Gs ( s  + t ) ]  

t '  = t $ ( g  - f )  + h ( f  + B t  + cyh) I / (b tx)  

( t '  - t* + s/2) for   outs ide  corrugat ion 

+ s / 2 )  for   inside  corrugat ion 

t* for   outs ide  corrugat ion 

-t for   inside  corrugat ion 
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C = Es s/(l - u s )  
2 

D = E 2/  [12(1 - u s )  3 2 
S 

a = 0.5 (h  - t / 2 )   ( c  + b - d )  

The coe f f i c i en t s   i n   t he   cons t i t u t ive   r e l a t ions  f o r  the semi-sandwich  (without 

r ings )   a r e  

Cll = E t x  + C 

- 
5 2  - 

C14 = elEtx - e C 2 

C = - u e C  
15 s 2  

c22 = c 

C24 = - U  e C s 2  

C = - e C  
25 2 

C33 = sGs + t G  

C44 = D + E 1  + E t  e + Ce 2 2 
X x 1  2 

C 4 5  = u D 
S 

c = D + ET + Ce2 

c66 = GJ + G s s 3 / 3  + 2p2/[b[(b - d)/(sGs) + (c  +  CY^ - c & ) / ( G t )  ] I  

2 
55 Y 
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Section 2 

PrCEBUCKLING ANALYSIS 

2.1 General  Shells  of  Revolution 

The axisymmetric  prebuckling  equilibrium state of   the   she l l  i s  governed 

by two nonlinear, nonhomogeneous, ordinary  differential   equations  of  second 

order:  an  equation  of  equilibrium  of  forces normal to   t he  undeformed 

meridian  and  an  equation  of  compatibility of s t r a i n s .  The equations, 

a p p l i c a b l e   t o   s h e l l s  of general wall construct ion  are  similar t o  those 

derived  by  Reissner  (Ref. 4, Eqs. I11 and I V )  f o r  i so t ropic   she l l s .  They 

a r e   v a l i d   f o r  "small, f i n i t e   ro t a t ions" ,  that i s  the  square of the  meridional 

ro t a t ion  i s  neglected compared t o   u n i t y .  These equations  are  derived i n  

Ref. 5 . 

Since  the  equations  are  solved  by  the method of f in i te -d i f fe rences ,   the i r  

coe f f i c i en t s  must be  evaluated a t  each of the  meridional   s ta t ions  in   the 

f in i t e -d i f f e rence  mesh. In the  computer  program  the  finite-difference  equations 

are  arranged  such that the  matrix of coe f f i c i en t s  i s  strongly banded  about 

the main diagonal:   the  compatibil i ty  and  equilibrium  equations  alternate.  

Hence, the   d i f fe ren t ia l   equa t ions  have the  following  form: 
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o Conpatibility : Odd Equation Numbers : M = 21 -t 1, I = 1, 2, 3, .K + 1 (K i8 
the Lumber of i n t e r v a l s   i n  the fini-t;e  difference mesii) 

where 

rz (x) = -r 2 (ke2r'/R1 + 2A22r1/R2 + Ah2r/R2) 
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where 
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The coe f f i c i en t s  A are obtained from a semi-inverted  form  of  the i d  
const i tut ive  equat ions:  

I 

%2 A13 A14 

A21 A22- 0 
A23 A24 

1 A31 32 
A 

O A33 A34 

0 1 
0 

0 

%J 

The A a re   ea s i ly   ca l cu la t ed  once the C (Eqs. 1) a r e  known. i J  id 

The designations C ( M , N ) ,  CNmL(M,N), FO(M) and  Fl(M), (M = 21+2 or 21+lr 

I = 1, 2, 3, . , .K .+ 1 and N = 1, 2, 3, . . .) for   the  numerical   coeff ic ients  

are used i n   t h e  computer  program. Tne row number M denotes  the m equation 

i n   t h e  set of 2K + 6 finite  difference  equations  generated  by  dividing  the 

meridian  into i( intervals ,   sa t isfying  equi l ibr ium  and  compat ibi l i ty  a t  the 

X + 1 points  in the  domain and sa t i s fy ing  two boundary o r  symmetry conditions 

a t  e i t h e r  end  of  the  meridian. Even equations (M = 21 + 2) are equilibrium 

equations  and odd equations (M = 21 +l) are compatibil i ty  equations.  The 

quant i ty  A$ i s  the  difference between the   t o t a l   s t r e s s   func t ion  JI and the  

t h  



1 - - 
value  of Jr calculated from membrane theory  for   uniform  internal   pressure:  

A J ~  = ~r - rv*r IRJr  .( 42 1 

A star * denotes  multiplication in t he  above and in the  following  equations. 

The computer  program appl ies   on ly   to   she l l s   wi th   cons tan t   p roper t ies   a long  

a meridian. Hence A' are zero   in   the   ca lcu la t ions ,  i d  

In the.  prebuckling  equilibrium  problem  the  boundary  conditions are expressed 

in t he  form 

Squations (43 a, b) are   the  boundary  conditions a t  the end A o" A the  meridian 

(see  Fig. 5 ) .  Equations (43c, d)  are the  boundary  conditions a t  B. The r i g h t  

hand s ides  are shown as stress functions  and moments a t  A and 3. Iiowever, 

they  can  be  considered  horlzontal  displacements ana rotat ions.  The boundary 

conditions are given i n  t'nis general form in order   to   permit   for   instance 

treatment of composite s h e l l s  in which the elastic propert ies   of   adjacent  

s t ruc tu res  are accounted for   th rough  the i r   s t i f fness   coef f ic ien ts .  For cases i n  

which the a x i a l   l o a d  is appl ied   eccent r ica l ly   wi th   respec t   to   the   she l l  

reference  surface,  the  resulting  bending moments e ? and e e are included 

in Mu and %, respectively.  
A A  3 3  
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It is  necessary  to  write  Eqs.   (43) .in terms of JI and p only, The 

boundary  condition (43a)) f o r  example has the form 

The row designation 1 indicates  that Eq. (44) is the first i n  t he  set  of 

2 K  -I- 6 different ia l   equat ions  corresponding  to   equi l ibr ium  and  comgat ibi l i ty  

a t  K + 1 points  in the  domain and 4 equat ions  for  the boundary  conditions# 

The nethod of f in i t e   d i f f e rences  is used t o  transform the  governing 

d i f f e ren t i a l   equa t ions   i n to  a s e t  of nonlinear  algebraic  equations.  Constant 

s ta t ion  spacing i s  used,  and the der ivat ives  of t h e  dependent  variables B and 

j l  are  simulated by three-point  f inite  difference  formulas.  
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The nonlinear  algebraic  equations are solved  by  the Newton-Raphson method, 

of  which an explanation is gfven i n  R e f .  6 .  The l i n e a r  system  which  must  be 

solved f o r   e a c h   i t e r a t i o n   i n   t h e  Newton-Raphson process l e  characterized by a 

matrix  of  coefficients which i s  s t rongly banded about  the main diagonal.  'This 

system is  solved  by  eff ic ient   subrout ines   cal led FACTbR and SdLVE,which 

were writ ten  by Brogan  (Ref. 7). 

2.2 Special  - .  .~ ~ PrebucklYhg - .  . . . Analysis . " ~. Tor Cylini3rical Shel ls  

I n  the  case of general   shel ls  of revolution  the  prebuckling  solution is 

obtainee  by  use  of a f in i te -d i f fe rence   ana lys i s .  The result ing  nonlinear 

algebraic  equations  are  solved  through an i terat ive  technique.  For the  

cy l indr ica l   she l l ,  however, the   coef f ic ien ts  in the  prebuckling  equations 

are   constant  and  thus  an  expl ic i t   analyf ical   solut ion i s  readi ly  

avai lable .  For economy in the  numerical  analysis t h i s  solution is u t i l i z e d .  

For  cylindrical   shells,   prebuckling  equilibrium is governed by  the 

equation 

where 
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and 

E2 = w/r 

K1 = w xx 

If an   ax ia l   load  N (pos i t ive   for   t ens ion  ) i s  applied t o  t h e   s h e l l  

N1 = N (49 1 

where 

For the  case S + T > 0 the   so lu t ion  of this equation i s  

- 
w = w + B cosh a x cos a x + B s inh a x s i n  a2x + B cosh a x s i n  a x 1 1 2 2 1 3 1 2 

+ B4 sinh a x cos a x 1 2 

where 
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where 

In the-  case S + T < 0 

w = w + B   c o s a x + B 2 c o s a x + B   s i n a x  
- 

1 1 2 3 1 

+ B4 sin  a  x 2 

Depending on the  sign of the  discriminant (S -t T ) one of the  solutions 

E q s .  (52) or (54) is  selected  and  substituted  into  the  boundary  conditions  given  by 

Eqs  . (43) . For cylindrical  shells E q s  . (43) become 
BAll(rH)A + BA12(M1)A -t B A ~ ~ ( w ) ~  + B A ~ ~ ( W ~ ) ~  - - *A 

BA21(rH)A -t BA22(MI)A + B A ~ ~ ( w ) ~  + B A ~ ~ ( W ~ ) ~  = (fil)A 

BBI1(rH)B + BB12(M1IB + B B ~ ~ ( w ) ~  3- B B ~ ~ ( W ~ ) ~  = $ 3  

BB21(1-k)~ + BB22(M1)B .t B B ~ ~ ( w ) ~  -t B B ~ ~ ( W ~ ) ~  = ($)B 

5 6 )  

By use of E q s .  (47’ ) and (48 ) 
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Furthermore 

rH = -r(M1), + N m x  

Eqs (57) and (58) together  with Eq. (51) o r  (54) are subs t i tu ted   in to   the .  

boundary  conditions (Eqs .  56). This r e s u l t s  in a linear  equation  system 

from which the   integrat ion  constants  Bi are  obtained 

Bi = [x. 4 1-l iyj} 

For  brevity  the  following notations are  introduced 

F1 

F2 

F 3 

F4 

For S + T > O  For S + T:< 0 

cosh (alL) cos (a iL)  cos (alL) 

s inh (alL) sin (a L)  
2 cos (a2L) 

cosh (alL) sin (a L) 

sinh (alL) cos (a L)  

2 s i n  (alL) 

s i n  (a2L) 2 

- 2 2  a3 - al - a2 a4 = 2 ala2 

a5 = a a  2 3  . t a a  1 4  
- 

'6 -. ala3 - a2a4 
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G1 = BB13 - BB12 E12 . H ~  = ~ ~ 2 3  - B B ~ ~  E12 

G2 = BB14 + B B l l  r(N + e12) H2 = BB24 + BB21 r ( N  + e12) 
G3 = BB12 e44 H = BB22 E44 3 

G4 = r B B l l  H4 = r BB21 

For S + T >  0 

~1 = a3 E44 + E12 

K~ = La2 (N + E12? - a5 E441 

K = r [al (N  + E12) - 3 a6 '44] 

For S + T e 0  

% = al c44 " %2 

K2 - a2 c44 + e12 

K~ = r (N + c12 - a: 
K4 = r (N + cl2 - a2 Cb4 

2 -  

- 2 -  

2 -  

The integrat ion  constants  B i n  equations (51) and (54) can  be  determined 

from  Eq. (59) .  The coe f f i c i en t s  X and Y .  i n  th i s   equa t ion   a re  
i 

ij J 
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For S + T >  0 

xll = BAl3 -E BA12 % = BA23 -E BA22 % 

X12 = BA12 a4 c44 X22 = BA22 ab c44 
x = BA14 a2 $. B A l l  K2 X = BA24 a2 + BA21 K2 

X14 = BA14 al + B A l l  K3 X24 = BA24 al + BA21 K 

1: 23 

3 

X = F G + (alF4 a F ) G2 + (a  F + a4F )G + (a6F4 - a5F3)G4 31 I 1 2 3  3 1  2 3  

X = F2G1 + (a2F4 + a F ) G2 + (a4F1 + a F )G + (a F + a F )G 
32 1 3  3 2  3 5 4  6 3  4 

X = F G + (a,lF2 + a F ) G2 + (a F + a F )G + (a  F $. a6F2)G4 33 3 1 2 1  3 3  4 4  3 5 1  

X = F G + (alF1 - a F ) G~ + (a  F - a F )G + - a F )G 34 4 1 2 2  3 4   4 3  3 5 2  4 

X41 = F H + (a1F4 - a F ) H2 + (a  F + a F )H + (a6F4 - a F )H 
11  2 3  3 1  4 2  3 5 3  4 

‘42 2 1 

X = F H   + ( a l F 2 + a F ) H 2 + ( a F   + a F ) H   + ( a F   + a F ) H  

= F H + (a F + a F ) H2 + (a4F1 + a F )H + (a5F4 + a6F3)H4 2 4  1 3  3 2  3 

43 3 1 2 1  3 3  4 4  3 5 1  6 2  4 

3 4   4 3  3 5 2  4 X 4 4  = F4H1 + (aLF1 - a2F2) H2 + (a F - a F )H + (a6F1 - a F )H 

Y1 = - BA13 w - BA12 (w E,, + N C14) 

y2 = - B e 3  w - BA22 (i E12 + N C14) + (fi1)* - eA N 

Y = - w  G1 - BB12 N C14 

+ $A 

- 
3 $B 

Yk = - w H1 - .BB22 N C14 + (R1& - e N B 
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F o r S + T < O  

xll BA13 - BA12 5 x 21 BA23 - BA22 

x12 = .BA13 - BA12 K2 x22 

1 '23 

= BA23 - BA22 K2 

X - - a (BAl.4 + B A l l  5) 
- - a (BAl.4 + B A l l  K4 ) X24 = a2 (BA24 + BA2l  K4 ) 

13 

'14 2 

- - a (BA24 + BA21 K ) 
1 3 

G a F  - G  a F + G  a F 2 3. 

2 3 

2 3 

x '31 = GIF1- 2 1 3  3 1 1  4 1 3  

X = G1 F2 .- G2 a2F4 - G a F + G4 a2 Fq 

X = G F + G a F  - G  a F - G 4 a  F 

X = G1 F4 + G a F - G3 a2 F4 - G4 a2 3 P2 

'41 = H1 F1 2 1 3  3 1 1  4 1 3  

x 42 1 2   2 2 4   3 2 2   4 2 4  

X = H F + H ~ F - H ~ F - H ~ F  
43 1 3  2 1 1  3 1 3  4 1 1  

'32 3 2 2  

33 1 3  2 1 1  3 1 3  1 1  

34 2 2 2  
2 

- H a F  - H  a F + H  a F 2 3 

2 3 

2 3 

2 3 

= H F - H a F  - H  a F + H a  F 

E4C4 = H F + H a F  - H  a F - H 4 a 2 F 2  1 4  2 2 2   3 2 4  
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Section 3 

STABILITY ANALYSIS 

3.1 Stabi l i ty   Equat ions 

Donnell-type  equations  are  used  in  the  stabil i ty  analysis.  These 

equations  are  based on the  following  assumptions: 

1. Love's f i r s t  approximation 

2:the f l e x u r a l  and ex tens iona l   s t ra ins   a re  of  comparable  magnitude 

3.  the  shortest  wavelength of deformations small i n  comparison 

t o   t h e  minimum radius of curvature 

The f i r s t  assumption i s  basic  to  almost  every  engineering  analysis of s h e l l s .  

The second  assumption  has two important  consequences : (1) Two of the   th ree  

compatibil i ty  equations for the  deformed  middle surface may be  approximated 

by  the similar equations  for  an  inextensional  deformation of the  middle 

surface,  and ( 2 )  a moment resu l tan t   d iv ided  by a radius  of  curvature  of  the 

middle  surface, or mult ipl ied by a change in   curvature   can be  neglected 

compared t o  the  normal s t r e s s   r e s u l t a n t s .  The t h i r d  assumption  permits  the 

approximate  solution of the  in-plane  equilibrium  equation  by  an  Airy-type 

s t r e s s   func t ion .  
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The Donnell-type  equations are used  here  rather  than more e x a c t   s t a b i l i t y  

equat ions  for   the  fol lowing  reasons:  

1. A stress funct ion cp can  be  introduced, which l eads   t o  a reduction 

i n   t h e  number of  dependent  variables i n   t h e   a n a l y s i s .   I n   t h e  

Donnell-type  analysis  the two dependent  variables are (P 

and w ; i n  a more exact  analysis  the  three  dependent  variables 

a re  u, v,  and w .  The consequent  reduction i n   t h e  number 

of f in i te -d i f fe rence   equat ions   l eads   to   reduct ion   in   the  

computer core  storage and  time  required  for  calculation of 

the  buckling  load. 

2. The Donnell-type  analysis  does  not  include  derivatives  of  the 

radius of curvature   of   the   shel l .  Such data as Ri , RY , and 

Ri" a re  needed as input   for   the  more exact   analysis .  These 

q u a n t i t i e s   a r e   d i f f i c u l t   t o   o b t a i n   f o r   s h e l l s  whose meridians 

are not  defined by analyt ical   expressions.  

3. The Donnel l - type  analysis   yields   suff ic ient ly   accurate   resul ts  

f o r  almost a l l  engineer ing  appl icat ions.  It i s  not   accurate  

when app l i ed   t o   she l l s  which  buckle i n  an  almost  inextensional 

mode, such as she l l s   wi th  weak support a t  the  edges. However, 

i n  most engineering  applications,   inextensional  buckling modes 

may be  eliminated by proper  design of t he   s t ruc tu re  which  supports 

t h e   s h e l l .  

41 

L. 



_ _  ._ . . ._ _ _  . . - . . ... .. - ._. . ". . ..-. . ..-.. " 

More exac t   s t ab i l i t y   equa t ions ,  which are not  restricted by a l l  of the 

assumptions basic t o  the Donnell-type of analysis,are  given i n  Appendix A. 

Zn a Donne11 type  analysis  the governing  equilibrium  equations are: 

(rN,)' - r ' N 2  + N' = 0 12 

- (r&L)" - Myr + (r 'M2)'  + %* +r!M,,jr 

and   t he   coqa t ib i l i t y   equa t ions  are 

Equations (67) and (68) a r e  aimost analogous; one obtained from the  other  through 

u - E  2 1  

=2 -I M1 

5 - N2 
6l -# M2 
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Equations (67a) and(6To)  and E q s .  (688)  and (68b) are satisfied approximately 

by the following  Airy-type stress and curvature functione: 

Accordin& t o  &iter (Ref. 8 ) x can  be  considered a "curvature function", 

analogous t o  a s t r e s s   f i n c t i o n .  mere i s  no need t o   d e f i n e  i t  813 the nonnal 

displacement. Howeverr in the present invest igat ion,  where t he  displacement8 

from the  prebuckled  equilibrium state are  considered to be infinitesimalr W 

does represent t he   ac tua l  normal displacement  within the accuracy of t h e  

' l ~ h B u o w "  shell equations. 

The final governing  equations are wr i t ten  in terms of and w by 

i a se r t ion   o f  Eqs . ( 70) i n t o  ( 6 7 ~ )  and ( ac) with the use of the 

cons t i tu t ive   equat ions  (41). 
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Two ord inary   d i f fe ren t ia l   equa t ions  of f o u r t h   o r d e r   r e s u l t  when the 

re la t ione  

are inse r t ed   i n to   t he   pa r t i a l   d i f f e ren t i a l   equa t ions   o f   compa t ib i l i t y  and 

equilibrium. "he f ina l   equa t ions  (two equations f o r  each  meridional   s ta t ion 

as explained  above) have the form: 

The coef . f ic ients  of c+-, and i t s  der iva t ives   in   the   compat ib i l i ty   equa t ion  are 

B ( X , l )  = - r A22 
CB(& 2) = r ' ( %2 - Ay - 2A2*) - 2 r S e  
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+ B3+K + 

(73 

- r1Bi3 n / r  + f 2 2  
3 

The coe f f i c i en t s  of  the w-terms i n  the compatibility  equation  and of a l l  t h e  

terms i n   t h e  

Eqs* (73 ) 86 

must be made 

equilibrium  equation  can be obtained  through  modification of 

shown i n  Table 1. Table 1 gives  the  changes which thereby 

i n   t h e   i n d i c i e s  of  the A and in   the   def in i t ions   o f  fl, f2' i J  
and f3.  

The designation C B ( M , N )  f o r   t he   coe f f i c i en t s  i s  a l so   u sed   i n   t he  computer 

program. The  row number M denotes  the mth equa t ion   i n   t he   s e t  of 2 K  -k 10 

finite-difference  equations  generated  by  division of the  meridian  into iC 

i n t e r v a l s ,   s a t i s f a c t i o n  of  coMpa%ibility and equilibrium a t  the  K + 1 poin ts  in 

t he  domain, ana  sat isfact ion  of  4 boundary or symmetry conditions a t  each  end of the  

meridian. I n  t he  com2uter  program odd equations  are  compatibil i ty  equations 

and  even  equations  are  equilibrium  equations. The computer 

s p e c i a l i z e d   f o r   s h e l l s  whose proper t ies   a re   cons tan t ' a long  

i n  a i l  ca lcu la t ions  A '  = Al' = E$k = 0 . i J  1 J  

Boun'dary Condttion's' 

program is 

a meridian. fience, 

The formulat ion  of   the  s tabi l i ty   analysis  must be  compatible  with  the 

formulation of the  prebuckling  analysis.   Therefore,   the boundary conditione 
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Table I, 

Changes i n  A and Definitions of fk for the  Coefficients 

CB(M,N) of the Compatibility and Equilibrium Equation8 
i d  

.~ ~ 

Compatibil’ity Equilibrium 

cpterme w-terms cpterns w-terns 

(SB(M,N),  N = 1 t o  5 CB(M,N),  N = 6 t o  10 CB(M,N), N = 1 t o  5 CB(M,N), N = 6 to 10 

replace by by by 
. - - - - . - .. - - .. - 

N N + 5  N N + 5  

41 

A 43 A42 %3 5 - 2  

A44 %4 

A22 A23 A32 

B33 

A33 

fl = rNlo fl = -rl$ fl = rk$ fl = 0 

f2 = 0 f2 = r ’ q  + BorK f2  = - r’kf f 2  = r ’ N  

A24 A34  A31 

0 0 B66 

20 

f = o  3 f 3 = -n2N2dr f 3 = n 2 y / r  f3  = -n2q/r 
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f o r   t h e   s t a b i l i t y   a n a l y s i s   a r e   t r e a t e d   i n  a manner analogous t o  t ha t  explained 

i n  the   sec t ion  on prebuclding  analysis.  Boundary conditions are w r i t t e n   i n  

the  form 

- 
BAll 
BA21 
~ ~ 3 1  
BA41 
BBll 
BB21 
~ ~ 3 1  
BB41 - 

BA12 
BA22 
~ ~ 3 2  
BA42 
BB12 
BB22 
BB 32 
BB42 

BAl3 
BA23 
BA33 
BA4 3 
BB13 
BB23 
BB33 
BB43 

BA14 
BA24 
BA34 
BA44 
BB14 
BB24 
BB34 
BB44 

BA15 ~ ~ 1 6  
BA25 ~ ~ 2 6  
BA35 BA36 
BA45 ~ ~ 4 6  
BB15 ~ ~ 1 6  
BB25 ~ ~ 2 6  
BB35 BB36 
BB45 ~ ~ 4 6  

~ ~ 1 7  
BA27 
BA37 
BA47 
~ ~ 1 7  
~ ~ 2 7  
BB  37 
BB47 

~ ~ 1 8  
~ ~ 2 8  
~ ~ 3 8  
~ ~ 4 8  
~ ~ 1 8  
~ ~ 2 8  
BB38 
BB48 - 

U 

The f i rs t  4 of E q s .  (74) are   the boundary conditions a t  A (see  Fig.  5). The 

last 4 are the  boundary  conditions a t  B. The boundary condi t ions  are  

expressed  in  the form given  by E q s .  (74) in   o rder   to   permi t   the   t rea tment  of 

s h e l l s  bounded by e l a s t i c   r i n g s  as wel l  as s h e l l s  f o r  which more simple 

boundary  conditions  are assumed. From Eqs .  (74) it can  be  seen  for example 

that  "simple-support"  conditions a t  the ends A and B of the  meridian  can  be 

simulated  by  the  specification BAl3 = 1.0, BA22 = 1.0, BA35 = 1.0, ~ ~ 4 8  = 1.0, 

f o r   t h e  non-zero coe f f i c i en t s  a t  A; and BBl3 = 1.0, BB22 = 1.0, BB35 = 1.0, 

and ~ ~ 4 8  = 1.0 for   the   non-zero   coef f ic ien ts  a t  B. .All other  BAij's and 

BBij's are se t   equa l   to   zero   for   th i s   case .   Phys ica l ly   the   above-spec i f ied  

input   parameters   correspond  respect ively  to  u 

rV = 0 a t  A and a t  B. 
H = 0, 5 = 0,  v = 0,  and 

If t h e   s h e l l  i s  supported  by  e las t ic   r ings a t  the  boundaries,  the BAij 

and BBij are computed from ring  equations  given  by Cheney (Ref. 9 ) .  Formulas 
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fo r   t hese   coe f f i c i en t s  are presented in Ref. 10 and w i l l  not  be  repeated 

here.  They are va l id  f o r  any  r ing,   the  centroid of which coincide  with i t s  

shear   center .  The r ing   cen t ro id  need not   coincide  with  the  shel l   reference 

surftice. It should  be  emphasized t h a t   t h e  BAij and BBij corresponding t o  

t h e  boundary  conditions  (Eqe. 43) of the  prebuckling  equilibrium  problem 

(wave number n = 0) are not   the same as those  corresponding t o   t h e  boundary 

coni i t ions  (Eqs.  74) o f   t he   s t ab i l i t y  problem (n # 0) .  The e f f ec t ive   s t i f fnese  

of   the r i ng  depends on the wave  number n 

When the   quant i t ies   appear ing   in   the  column vector  of Eqs. (74) are 

expressed .in terms  of cp and w, the  boundary  condition  equations are of the  

s m e  form as the  equi l ibr ium and compatibi l i ty   equat ions,  (Eq. 7 2 ) .  The 

e q r e s s i o n s   f o r  u and v i n  terms of cp and w are   obtained  by  e l iminat ion 

of v and  the  s-derivatives  of u from the   s t ra in-displacement   re la t ions 

48 



r 

The forces  and  displacements normal  and t a n g e n t i a l   t o   t h e  middle surface 

can  be  writ ten  in  terms of cp and w .  Table 2 g ives   the   coef f ic ien ts  or cp 

and i t s  der iva t ives .  The quan t i t i e s  u and u4 i n   t h e   s i x t h  

row (v) represent  the  corresponding  coefficients shown i n   t h e   f i f t h  row 

( u )  . With r ega rd   t o   t he  Ai j  and Bkk , the  changes shown i n  Table 1 must be 

made in   o rder   to   der ive   by   ana logy   the   coef f ic ien ts   o f  the w-terms. The 

funct ions  f4   through f are   given  in   Table  3 .  10 

1 ’  u 3 ’  

3 .2  - Sol i t i on  of the  Equations 

The method of f in i t e   d i f f e rences  i s  used   to   so lve   the   l inear  

d i f f e ren t i a l   equa t ions  of the form (72) .  The s e t  of f ini te   di l ’ ference  equat ions 

i s  arranged as descr ibed   in   the   sec t ion  on prebuckling  analysis.  Hence the 

matrix of coe f f i c i en t s  i s  s t rongly banded  about  the main diagonal. 

The der iva t ives  of cp and w are  simulated by ?-point   central   d i f ference 

formulas  and  the  coefficients of 2M + 8 a lgebra ic   equa t ions   a re   s tored   in  a 

condensed matrix A.  The 2M + 8 equations  correspond  to  the  compatibil i ty 

equation  and  the  equilibrium  equation a t  M po in ts  on the  meridian,  and 8 

boundary  conditions,  four a t  each  end of t h e   s h e l l .  The s tab i l i ty   equa t ions  

f o r  n = 0 are  derived  by  appropriate  modification of the  nonlinear  prebuckling 

equations.  These s t ab i l i t y   equa t ions  are given  in   Ref .  11 and w i l l  not  be 

repeated  here.  
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Table 2 Coefficients for Tangential and 
Normal Force6 and I>isplacernents 
when n # 0 

(P' 

r' 

-n 

l l  
Y 1 r'ul/nj I ( r  'u2-rA, c2 )/n r'u - r'AZl)/n 3 

4 

'p 

-n / r  2 

.r'n2(Ah1 + A )/r2 + n2A1 /r + f5 31 . 31 

(r'uq + AZln /r)/n + f B  2 
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Table 3 

Definitione of fk for the Boundary Conditione 

- .. . . ~~~ ~ 

(p - terms w - terms 

f4 = B,r ’ f4 = rNl0 + B6p2/r 

f = - n a,/r 2 
f 5  = - n 2 r ‘B66/r 2 5 

f6 = 0 f6 = rkw. 
2 

f “ 0  f = - r’/R2 + n 2 ~ , / r  

f8 = 0 f8 = 1.0 

9 f 9 = r/(nR2) 

7 7 

f = o  

fl0 = 0 f,, = 1.0 
L - “- ””- 
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The s t a b i l i t y ' e q u a t i o n s   i n   f i n i t e - d i f f e r e n c e   f o r m  are a s e t  o f   l i n e a r ,  

homogeneous, a l g e b r a i c   e q u a t i o n s .   T h e r e   e x i s t   n o n t r i v i a l   s o l u t i o n s   o f  this 

s e t   f o r   d i s c r e t e   v a l u e s   o f  a pa rame te r ,   i n   t h i s   ca se  a load  parameter .  The 

lowest  eigenvalue i s  the   buckl ing   load .  I t s  value  can  be  obtained  by  various 

metjlods. The de te rminan t   o f   t he   coe f f i c i en t   ma t r ix   can   be   p lo t t ed   ve r sus   t he  

l o a d   i n   o r d e r   t o   f i n d   t h e   p o i n t  where i t s  s i g n  f i r s t  changes. On t h e   o t h e r  

hand, when the  eigenvalue  problem has the  form 

(A + AB)x = 0 

I n  t 'h is  a n a l y s i s   i n   w h i c h   n o n l i n e a r   p r e b u c k l i n g   e f f e c t s  are inc luded ,   the  

eigenvalue  problem  does  not  have  the  simple  form  of E q .  (77). The eigenvalue 

parameter h does   nc t   appea r   l i nea r ly ,bu t   man i fe s t s   i t s e l f   t h rough  i t s  inf luence  on 

the  prebuckl- ing  lner idional   rotat ion p , s t r e s s   r e s u l t a n t s  NIO and  and  changes 

i n   c u r v a t u r e  yo and nqo , which  appear i n   t h e   c o e f f i c i e n t s  of t h e   s t a b i l i t y  

equa t ions .   These   quan t i t i t e s  are r e l a t e d   i n  a nonl inear  way t o   t h e   l o a d i n g .  

I-lowever, t h e r e   a r e  many p r a c t i c a l   s h e l l   s t r u c t u r e s  which  buckle when N and 

Pigo a re   ve ry   c lose   t o   t he   va lues   p red ic t ed   f rom membrane theory  and when 

0 

L 

10 

Po 
i s  so small t h a t   l i n e a r  membrane theory i s  st i lL accura t e .   In   such   ca ses   t he  

s tab i l i ty   equa t ions   can   be   approximated   by   equat ions  of the  form  of E q .  (77) and 

t h e  power  method (Ref. 12) can  be  used to   f ind   the   lowes t   e igenvalue   and  

corresponding  e igenvector   with a f a i r  degree  of  accuracy. 
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When the  prebuckling  bending  stress  and  other  nonlincar  prebuckling  terms 

are  im?ortant,  such as in   t he   ca se  of bifurcat ion  buckl ing of ex te rna l ly  

pressurized  shallow  spherical  caps,  the power method can  be  used t o  advantage i n  

the  following way: The determinant D of coe f f i c i en t s  of t h e   s t a b i l i t y  

equations i s  evaluated for increasing  values  of  the  loading  parameter p . 
Figure 6 shows a p l o t  of D versus p . There i s  a p-interval, p1 t o  p2 , 

i n  which D f i r s t  changes  sign. The load   for  which D = 0 i s  approximated  by 

l i nea r   i n t e rpo la t ion  from the  end-points p and p of the   i n t e rva l .  The e r r o r  

in   the   buckl ing   load  i s  now Ap = p3 - pcr . I f  Ap/pcr C< 1 , then 13 

and N20 can  be  expanded in   Taylor   se r ies   about  p 

1 2 

0 ' N1O 

3: 

where z = p - . There a re  similar expansions  for  the  prebuckling  changes 

in curvature w. and w. . The der iva t ives  d$ /dp , e tc .   a r e   ca l cu la t ed  

from interpolation  formulas  such as: 

p3 

10 20 0 

Subscripts 1, 2, and 3 re fer   to   va lues   cor responding   to  p , p2 , and p . 3 
The quan t i t i e s  L; , and STEP a re  shown i n   F i g .  6 .  A value  for  z i s  

calculated from the   l i nea r  system 

L2 ' 
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through  use of the power method. Since A p / p  << 1, convergence i s  indeed 

rap id .  The new value of p i s  p = p + z .  I f  [z/p31 i s  less   than  some 

preassigned number ERR, ca lcu la t ions  f o r  the  eigenvalue  te.rminate. I f  not,  

new der iva t ives  (dB /dp)& , e tc .   a r e   ca l cu la t ed ,  and a new cor rec t ion   fac tor  

is ca lcu la ted  from E q .  (80 ) . I te ra t ions   p roceed   un t i l  1 z/p I < ERR. 

c r  

3 

0 
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Appendix A 

MORE  GENERAL STABILITY EQUATIONS 



NOTATION 

'1 ' '2 

UI-I 

uv 
V 

coefficients of constitutive  equations  (see Eqs.  A2) 

horizontal  (radial)  force/length (see Fig. 5) 

number of circumferential  waves in buckle  pattern 

incremental  stress  resultants (see Fig. 9) 

prebucltling stress  resultants 

normal  pressure,  positive outward 

radius of a parallel  circle 

meridional and circumferential  radii of curvature 

(see  Fig. 7) 

circumferential,  meridional, and normal  displacement 

.components  (see  Fig. 8) 

horizontal  (radial)  displacement  (see  Fig. 5) 

vertical  (axial)  displacement  (see  Fig. 5) 

vertical  (axial)  force/length  (see  Fig. 5) 

a r c  length,  meridional  coordinate  (see  Fig. 7)  

normal  coordinate  (see  Fig. 9) 

" - r 
r 

Al 



" -  
EX 9 '0 ' Yxo middle  surface  strains 

00 

curvature  changes 

1 1 1  
r ' r1 ' r2 

- " - - 

circumferential and meridional  coordinates  (see Fig. 7) 

rotation  components  (see Fig. 8 and Eqs. A3) 

prebuckling  rotation 

Subscripts and superscripts 

dilferentiation with respect to a r c  length x 

pertains to  meridional  direction 

pertains to circumferential  direction 

prebuckling  quantity 

A2 



A1 Introduction 

A s  was  discussed  in  Section 3 ,  Donnell-type  stability  equations  give  reasonably good 

solutions  for  almost all she11 bucltling  problems  encountered  in  practice.  IIowever, 

more  accurate  stability cquations are needed if the  shell  buckles  in  an  ahnost 

incxtensional  mode.  Sobel  (Rcf. 13) has  derived 11101-c general  stability  equations 

for  ,misymmetric+lly loacled isotropic  shells of revolution of constant  thiclumss. 

These  equations are extended  here to cover  orthotropic  shells of variable  thickness. 

The  resulting  equations  are  identical  to  those  derived  by  Ikmpner  (Ref. 14) except 

lo r  terms involving  rotations  arouxd  the  normal  which  were  not  considered in 

Ikmpner's  analysis.  Three  stability  equations  in  terms of the  three  displacement 

components  u , v , and w are obtained  through  combination of the equilibrium 

equations  with  the  constitutive and kinematic  relations.  These  equations  are 

presented  in  Section A 2 .  

It may  be  desirable  to  investigate  the  effect of cer ta in   terms,   such as rotations 

around the  normal.  Therefore  the  iollowing  parameters  are  introduced in  the 

final  equations : 

1 , if effects of te rms  involving  rotation  around  the 

6RN = { normal are included 

i 1 , if the  prebuckling  rotation is included  in  the 

equilibrium  equations 



i s  incluclcd in Lhe 

= I kinematic  equations 

1 , if the prebucltling  rotation is included  in  the 

6 BC = I  boundary  condition  for a 
0 , otherwise 

1 , if the stability  ecluations a re   t o  be specialized  to 

Domcll-type  equations 
'd - 

- 

\O , otllerwise 



e Constitutive  Equations 

Nx 

N O  

NxO = 

-I 

M 
X 

Mxo_ 

D1l D12 0 14 15 

12 D22 15 D25 

D33 
0 D44 D45 0 

0 D45 .D55 0 

0 

0 

D3 6 

0 

0 0 0 0 

14 15 

15  D25 

0 0 0 0 
D3 6 D66 



19 Kincmatic  Equations 

E = v + p w + w  w b  
X 1 00 e E L  0 ?LV 

- 
w = - G +  

- 
E = npu + y v  + p w 

0 2 X 2 
u) = npw + p u 

- 
yx 0 

= - y u + u - n p v + w  w d  w = n p v  
00 x E L  zl 

KXO 
= (-yplu + 2yp2u - p2u -c npp v )6 + 2nypw - 2npw 1 d  

o Stability  Equations  Written  in  Terms of Displacemcnts 

Inscrtion of Eqs. ( A 2) 2nd ( A 3 )  into Eqs. ( A  1) re su l t s  in  thc  following  st:tbility 

cyuations for a variable  thickness,   orthotropic  shell  of revolution  subjected  to :mially 

symmetric loads: 

a~ + n v + a v + n u + a u + ~ ~  + a w + : L w + ; l w  = 0 

b v + b v + b u + b u + b ~ u + l ~ w + b w + b w = O  

1 2 3 4 5 ‘ G  7 8 9 

1 2 3 4 5 G 7 8 

c Y + c ~ + c v + c v + c u + c u + c u  1 2 3 4 5 6 7 
. .. . 

+ c ‘iV + c w + c w + cllW + c12w = o 
8 9 10 

where 
- 

I - - 
a. = a  - a  - a  - a  -a i = 1 ,  . . . ,  9 

b. = 1;. - 6 .  - 6. - b.  - c. i = 1 ,  . . . ,  8 

A *  

1 i i i i i ’  
A - 

1 1 1 1 1 1 ’  

- - - - 
c = c   - c  - c   - c   - c  

A *  

i i i i . i  i ’ i = 1 ,  . . . ,  12 
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e 



and the non-zero valucs of these coefficients are 
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. . . . . ._ - 
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All 



1 

A12 





A3 Boundary Conditions 

Thc equations  governing  the  stability  of a shel l  of revolution  have  been  expressed in 

t e r m s  of the  displacement  components  u , v , and w , IIence,   i t  is also necessary to 

express t~w natural  boundary  conditions (Sx0 , N ~ ,  1%) i n   t e rms  of tile cl is-  

placements. This is effected  through  use of the followiag equations: 

" _  

- 
NxO - - NxO - ddp2Mx0 = i  v + i u + i u + i w + i w 2 4 5 7 8 
- 

- - j , L + j v + j , u + j W  3 3 7 + j ~ + j w  8 9 
- a = M~ + y(nqx - N I ~ )  + + N ~ ~ w ~  + ( h p x ~ O o  

= k i; + IC v + IC v + ILU + IC u + IC w + 1< w + kllW + 1C 
2 3 4 0 7 9 10 1 2w 

- 
M x = P V + l v + l u + P ~ v + J ! - \ V + P w  1 2 3 4 5 G 

wllere 

i = np(-e + fi p e ) 2 1 d l 2  

i = e  - 6 p e  4 1 d 2 2  

i- a = Y [-e1 + dde2(2PZ - P,) 1 + 6ELP~elWo0 
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I 

k2 = f l  - p f b 

k3 = (f - "/f2) - 2 5  z p  

1 3  d 

? 1 

~ 

&f7 - Yf 41% 
+ yf2 - 2p f 6 - YP 1 3  d 1f46d 



It is often  convenient to  rcl)rescnt t,hc bolu~tlary conditions in k r m s  of u i n l  :111d radial 

components  instead of tangential  and normal coml)oncnts. The relations  betwecn  thesc 

two representations are as lollows: 

I I  = N cos cp*  - Q, sin ~ p *  

v = K sin Q* -I tj cos @ *  

- 

X 

X X 

u = v ,cos 9 + w sin 4 I1 

u = v sin (p - w cos  9 
V 



I 

\F >AERIDIAN y = y ( r ) 

SHELL 

Fig. 7 Noiatlon lor a Shell  of itevolution 

A17 



( a )  DISPLACEMENTS 

\ 

( b )  ROTATiONS 

Fig. e Displacement and Rotation Components 

Fig. 9 Streso Resuitants 

Al8 NASA-Langley, 1968 - 32 CR-1050 


